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Abstract

The purpose of this paper is to investigate mechanical models

of ionic and atomic solvation in order to suggest a part of the

mechanism of the electroreduction of metal ions. We use a Morse

potential, the parameters for which are determined with the use of

spectroscopic information, to try to predict the mechanical properties

of a solvated atom. In particular, the solvated ionic and atomic

systems are allowed to approach and interact with a metallic surface.

Changes in the positions of the equilibria and changes in the

calculated force constants are determined. We define accurate

adionic and adatomic states. In these states the ion or atom

occupies an expanded cage which includes the solvent and the surface

of the metal. The activation energies for the formation of adions

may be much larger than the activation energies for the formation

of the related adatoms. Thus, if a reduction should occur at the

outer Helmholtz plane, a solvated atom can be formed. In the

vicinity-of the surface, such a solvated atom can desolvate much

more readily than the ion. The strength with which solvent or ligand

is associated with a zero-valent metallic species, we believe,

influences strongly the character of the metallic deposit formed.



-2-

1. Introduction

Although the electrodeposition of metals is important, our

knowledge of the process at the molecular level nevertheless is

rudimentary. Therefore, in an effort to try to understand better the

events which occur during the course of the reduction of the ion and

its deposition as a metal atom onto the surface of the electrode,

we present the following analysis. In particular, we suggest that a

possible route for the deposition of some metal atoms onto the surface

depends upon the generation of free solvated atoms in the interface.

These atoms subsequently desolvate to release the atom for bonding

to the metal.

Of the forces which operate between the ion and its primary

shell of solvent, the electrostatic attraction between the ion and

the solvent dipoles is the strongest. Nevertheless, as we have

recently shown, I '2 the far infrared active vibraticns of the ion

inside a regular, crystalline cage of solvent yield information

largely about the forces of repulsion and the van der Waals attractions

which operate betwecn the ion and the molecules of solvent. These

forces can be modelled successfully with the use of several simple

functions. It is possible then to account for the observed trends in
1,2

vibrations of the various solvated ionic species.

In addition, we also have predicted the vibrational maximum

and line-shape for a simple solvated lithium atom.3 Our prediction

was based on the use of a correspondence between the form of the

Born exponential repulsion and the Morse potential. Factors common

to both potential energy functions were identified. The force
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constant predicted for an atom interacting with a cage of solvent

molecules through the forces of the Morse potential was then

evaluated. We suggested the vibrational band maximum may be found

in the range of 300-400 cm-1.3

The analysis we carried out3 enables us to define the form

of the Morse potential which we intend to use in the analysis of the

stability of the solvated atomic system, the subject of this paper.

It is important to note that although the electrostatic contri-

bution to the vibrational force constant vanishes for the ion in a

crystalline cage of solvent [by virtue of factors of symmetry],

the electrostatic forces of attraction are still important in the

solvated ionic system. For the consideration of the process of ionic

desolvation, the electrostatic interactions should play a substantial

role. As the ion, within its regular cage of solvent, is displaced

beyond the limits of the harmonic restoring forces, the ion should

begin to experience the effect of strong electrostatic attractions.

In contrast, as a solvated atom is displaced beyone the limits of its

harmonic restoring forces, the anharmonic forces for restoration may

not be as great. Alternatively, the atom may be created, by the

process of reduction, in a state of solvation which is intrinsically

unstable. The ionic state may require an activated desolvation.

The strict desolvation of an ion may not always occur to produce

a bare ion at the metal surface. The formation of such a surface-

bound ion should involve a partial covalent bond between the ion and

the surface. However, as shown later with reference to the lithium

ion, even the formation of a partial covalent bond with the surface

may not be incentive enough to induce desolvation.

On the other hand, if the reduction of a metal ion can occur
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by means of an outer sphere mechanism somewhere in the vicinity of

the outer Helmholtz plane, then the formation of a solvated atom is

likely. The removal of the atom from its sheath of solvent is

much easier to accomplish than is the removal of an ion.

The following sections present an analysis which builds upon

the suggestion that the reduction of an ion to form a solvated atom

is possible. No consideration is given to the problem of the

determination of the theoretical rate constants for this process.

Instead, at this time we explore the nature of the solvated atomic

states as contrasted to the similar states for the ion. The

objective is to determine how stable one system is compared to the

other. This is done through the investigation of the stability of a

system with respect to the displacement of the ion or atom along a

vector which is directed from the centre of solvation through a

planar face of the cage of solvent. At the other side of this plane

is the metal surface. The effect of the metal will be approximated

merely by one atom.

2. States of Solvation and the Vibrations of Solvated Ions and Atoms

A discussion of the far infrared active vibrations of the

simple, solvated alkali metal cations has been given previously. 1 3

These particular states of vibration were examined in order to

construct a potential energy function for the state of solvation of

an ion. Here, we shall be concerned with the analyses of mechanical

stability within the states of solvation for ions and atoms. It

is sufficient therefore merely to summarize the formulae needed

to proceed to the consideration of the stabilies of solvated ionic
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and atomic systems.

In addition to listing the formulae needed in the subsequent

analyses, we consider the character of the solvation of

a free ion or metal atom. This examination is necessary in order

to try accurately to estimate the form of the potential energy

function for the solvated atom.

The experimental evidence4 indicates that the far infrared

spectra of simple, solvated ions are largely insensitive to the

nature of the solvent. Shifts in the maxima for various solvents

are of the order of a few wavenumbers. As a consequence, it is

valid to interpret these vibrational maxima as arising from the

vibrations of the metal ion within a cage of solvent molecules.

The specific vibrations of the molecules, internally or about their

centres-of-gravity, contribute very little to the spectrum.

The potential energy function for an ion or atom trapped

within a complicated cage of sources can be determined with the use

of pair-wise interactions. In order to consider harmonic oscilla-

tions of a centrally solvated ion or atom, or to consider questions

of dynamic stability, it is necessary to determine the second

order coefficients in a Taylor series expansion of the complete

potential functions. For a system with a complicated distribution

of sources, the vectorial Taylor series can be used. When appro-

priately handled, it is possible to develop expressions for

force constants in a manner which is similar to the treatment of

crystal field problems.
1,5 7

For a scalar function of the form

Ag(R) - /TitoQ(R) f(R) = f(R) (2.1)
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in which Y is the spherical harmonic function, the Taylor series

is given by
S

^a £

g(R+r) = I (rn/n!)JAn P,(R-r) r {-44(+4) R+
n=0 z q=0

Q d) f(R). (2.2)

Here,

AnZ = 0 for £ > n and n - Z odd

= (n-+l)n!(n-z+l)!! for £ < n and n - Z even (2.3)
(n- Z.41) !(n+ Z+ 1) T

and Pn (x) is the Legendre polynomial of order n. The quantity

R.r is the scalar product of the unit vectors R and r where r

is the vectorial displacement about the end-point of the vector R.

The advantage of the formula (2.2), as we have discussed and

illustrated elsewhere, 5 -7 is the ease with which it can be applied

to a number of problems. In particular, eq (2.2) separates

angular and radial dependencies in the same manner as is done with

the Laplace expansion of the Coulomb potential.

The first and second order terms are of particular interest

to us. They are

A df
t1 (R+r) = -rP,(R-r)2 (2.4)

and
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2 = 1(2 df d2f 2(r) df d 2~ 2 (R r) T SITU UpRr 1. (2.5)

The specific first and second order Legendre polynomials are

P1 (x) 
= x (2.6)

P2(x) = 1(3x-) (2.7)

The first order contribution to the Taylor series is easily con-

verted into the usual form for the force acting on a test particle:

t1 (R+r) = r.F (2.8a)

F = -(R/R)df (2.8b)~ .(8R

The second order term, when evaluated at a point where F = 0, yields

the "force constant" for the harmonic oscillation of the test

particle. If the evaluated "force constant" is negative, any

motion at the point of vanishing force must be unstable. This

familiar mechanical maxim will be essential to our analyses.

Given an individual pair potential v(R ij), we assume the

complete potential for a system of masses or charges to be pair-

wise additive. Thus,

VTR v(R ij )  (2.9)

where the summation excludes self energies (i=j) and i>j. If one

element, a centrally solvated ion or atom, for example, is common



-8-

to all of the pairs in the summation (2.9), then it is possible to

consider the displacement of that particle vectorially in any

direction away from the original location, R. Thus,

V(R+r) = I'v(R ij+r) (2.10)

and each v(R ij ) is given its own Taylor series (2.2) for a dis-

placement r with respect to Rij.

In previous papers '2 we have investigated several potential

energy functions which can be used to characterize the state of

solvation of an ion. With the use of these functions, it is possible

to obtain expressions for the force constants for the far infra-

red active vibrations. Thus, values of the parameters in the

potential functions can be determined.

For the consideration of the stabilities of states of solvation

of solvated atoms, in this paper we shall lay a particular emphasis

on the use of the Morse potential. We do this here, not for reasons

of the accuracy of the functional form (that accuracy has not been

clearly demonstrated for these systems), but rather at this point

the function yields results which are physically transparent. The

results are more transparent than is the case with the use of other

more complicated, and perhaps more numerically accurate, forms.

Nevertheless, in this section we do provide a sketch of the

behaviour of one more complicated functional form, the combination

of an exponential repulsion and the ion-induced dipolar interaction.

Because the far infrared active vibrations of an ion inside

a cage of solvent do not depend upon the vibrations of the solvent

which make up the cage, it is necessary only to consider the
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interactions between the ion (and subsequently the atom) and the

solvent. That is, interactions between solvent dipoles may be

neglected, especially with reference to questions of the stability

of a centrally located species against small displacements. The

obvious contributions to the interaction between the ion and the

surrounding solvent, therefore, are the ionic-dipolar, ionic-

induced dipolar, van der Waals (induced dipolar-dipolar), and

overlap repulsive interactions. A combination of exponential

potential functional forms yields the Morse potential. We now list

the first and second terms in the Taylor series for these potential

forms.

For a Born exponential repulsion,

OB(R) = B exp[(Ro-R)/p] (2.11)

where B and p are constants, we find

tlB(R+r) = r'R B exp[(RO-R)/p] (2.12a)

with the force given by

fB= PR7 exp[(Ro-R)/p]. (2.12b)

The second order term is

t2B(RT 1 2 1 B +

tB(R+r) = 7T S - exptR,-R)/pl (1-2p/R) + 2P2LR.rJ)l+p/R)

(2.13)

With the use of eq (2.7), this expression is easily converted into
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a cartesian form. The cartesian form is useful for those cases

of solvation in which the distribution of solvent ceases to be

regular and crystalline. We write

t2B(R+r) = rK (2.14)

in which KB is a cartesian (force constant) matrix with elements

given by

k Bxx B- exp[(Ro-R),'Q] ( (2X2-Y2-Z2) (l+pfR) + R(R-2p) 3 (2.15a)
3(pR)2

k By2B )2 XY(l+p/R)exp[(RO-R)/p] (2.15b)
xy (pR)

with the remaining terms generated by permuting X, Y, and Z. The

coordinates X, Y, and Z refer to the location of the molecular

source of the Born repulsion.

The Morse potential is

()= D exp[a(RO-R)I(exp[a(RO-R)] - 23 (2.16)

The first order term in the Taylor series is tlM = £ M with

2aD R exp[a(Ro-R)](exp[a(Ro-R)] - 1. (2.17)

The second order term is

t2M '1 2n 2 4 exp~a(Ro-R) 2 exp~a(R-)]1l/R 1J -/
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+ P2 rR) 4 exp[a(Ro-R)](l+l/2aR) - 2(l+I/aR)J. (2.18)

Cartesian elements for the second order expansion of the Morse

potential are easily constructed from (2.15a) and (2.15b) etc.:

t2M = 1 (2.19)

with

k a2D exp[a(Ro-R)]((2X2=y2-Z 2 ) 4(l+1/2aR)exp[a(Ro-R)]kMXX 3R 2

- 2(1+1/aR)) + R(R-1/a)exp[a(Ro-R)] - 2R(R-2/a)} (2.20a)

and

k~ = 4 !!2D XY exp[a(Ro-R)] 2(1+1/2aR)exp[a(Ro-R)]
Mxy R 2

- R(R+/a)J. (2.20b)

The ionic-induced dipolar interaction is

(Ze) 2a

( - s (2.21)ID( 2R4

where a. is the polarizability of the solvent and Ze is the charge

on the ion. The van der Waals attraction is expressed as

OvdW(R) = -B/R6  (2.22)

-- , ,,, " I na l l m I I ll II lll l l Sll Bll - - ii
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and frequently repulsions are expressed as

OR(R) = A/R q  (2.23)

where typically q is 9 or 12. For the general inverse power potential

of the form Q/R , we have

W !' _ (2.24)

and

t = r2 q + 2.(q+2)P 2(roR) (2.25)t2Q3Rq2

The electrostatic ionic-dipolar interactions are more

complicated to handle. This is the case because it is necessary

to consider both the location of a source dipole (a solvent molecule)

as well as its orientation. In order to handle adequately the

terms which are of second order in the displacement of the ion from

the origin of the coordinates, we make use of the Carlson-

Rushbrooke expansion. 12 ,13 The first order term, tlCR = !'ECR'

has the following components of the force:

fxCR = ax (2X2-y 2 "Z2) + 3ayXY + 3a zXZ (2.26a)

fyCR = 3a xXY - a y(2X 2-Y 2-Z2) + 3a zYZ (2.26b)

fzCR = 3Z(a xX + a yY) + a z(3Z 2 -1) (2.26c)

with
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-Zeu

FiCR jRs fiCR (i=x,y,z) (2.27)

and ai (i=x,y,z) are direction cosines associated with the orienta-

tion of the dipole.

The second order term is

t 2 CR(R+r) 1(3eu/2R')r:A (2.28)

with

A = 1{axX[S(X2 -3Y2 -3Z2)+3]-a Y[5(y 2-3X 2+Z2).l]+a Z(2 0XYAxx x

-10Z 2+6)} (2.29a)

A = {axX[S(X2 -3 2+Z2 )-l]-ayY[5(Y2-3X 2 -3Z2)+3]+a Z(20XY

1OZ2 +6} (2.29b)

Azz M 2{(a xX+a Y)(SZ 2 -1)+a zZ(SZ 2-3)} (2.29c)

Ax . Ayx  1 {axY[5(3X 2-y2-Z2)+l]+ayX[5(3y2-x2-z2)+l ]

+20azXYZ} (2.29d)

Axz = Azx = {a xZ[5(X2-Y2-Z2)+3]+0a yXYZ+2a z(SZ 2 -1)} (2.29e)

A = Azy {10a XYZ +a Z[S(y 2-X2-Z2)+3]+2a Y(SZ 2-1)} (2.29f)yz zy x y z

With the use of eq (2.27) it is possible to show easily that

the position of equilibrium for a crystalline cage of solvent

dipoles, all aligned to give the optimal attraction, is also the

centre of symmetry. Furthermore, with respect to that position

of equilibrium, the second order term can be shown to vanish.

Therefore, as we originally reported, 1 for cages of solvent dipoles
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which are arranged about the centrally located ion according to

the symmetries of the tetrahedron and octahedron, there is no con-

tribution to the harmonic force constant from electrostatic terms.

Any deviation from crystalline symmetry, however, does involve

electrostatic contributions to the force constants. The terms listed

facilitate the determination of the magnitudes of these force constants.

In our initial investigation I of the far infrared spectra of

the solvated alkali metal cations, we employed a simple model potential

energy function. Specifically, we assumed that it was possible to

use a Born type of exponential repulsion, eq (2.11), together with

the direct interaction between the ion and the dipole on the solvent.

Other contributions to the total potential energy function, such as

the interaction between the solvent dipoles in the first shell,

were not included in the process of determining the values of the

parameters B and p. Instead, we considered only the single solvent-

ion contribution. The condition of equilibrium for the ion-solvent

pair yielded an expression for B in terms of the dipole moment of the

solvent, the charge on the ion, and the equilibrium separation.

We assumed further that the value of this equilibrium separation was

given as the sum of the ionic crystallographic radius and the solvent

radius, as determined from the molecular volume.1  Thus, for example,

for the lithium cation solvated by dimethyl sulfoxide (DMSO), we
02 -12

found1  B = 0.23 x 10 erg and P = 0.19 A.

Subsequently, we argued 3 that if the lithium cation were

electrochemically reduced at the outer Helmholtz plane to yield a

solvated atom, then it might be possible to infer the values of the

parameters in the Morse potential, eq (2.16), from the values

of B and p found for the ion. In particular, we argued that because



direct electrostatic contributions do not appear in the expression

for the force constant of the ion, their absence will not be missed

when the atom is formed. If, on the other hand, the repulsive part

of the Morse potential is essentially the same as the repulsive

part--the Born term--for the ion, then it should be possible to

specify the values of the dissociation energy D and the exponential

quantity a as

B D

2p 1/a. (2.30)

For the Morse potential, the force constant in a tetrahedral field

of sources is

kT T §a2D

- 2D (2.31)
3p2

Thus, we predicted that the atom should have a spectral maximum due

to the vibration of the atom within the cage of solvent of 320 cm "1 .

In a subsequent paper,2 more realistic potential energy functions

were employed in order to investigate the vibrations of the alkali

metal cations in cages of solvent. Potentials consisting of repulsions

between the ion and solvent molecules, attractions between the

ion and the dipoles on the solvent, the ionic induced-dipolar

terms, and the repulsions between solvent dipoles in the first

layer were considered. A variety of forms were used to model the

repulsions and some of the attractions. A simple form, which

gave reasonably consistent results with our general findings, con-

sisted of the Born repulsion, an ionic induced-dipolar attraction

of the form of eq (2.21), the direct ionic-dipolar attraction, and
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the repulsions between dipoles in the first layer. The adjustable

parameters were B and p in eq (2.11). The values of B and p were

determined with the use of the expression for the force constant

and the condition for equilibrium in the solvated system. We found

that B = 0.51 x 10 erg and p = 0.26 A in this calculation.

With the use of these new values for B and p, we estimated 3

a new value of the maximum for the absorption of solvated, atomic

lithium. We found in this case that the maximum shifts upward to

353 cm"1 . Implicit in this determination is the assumption that

the parameters in the Morse potential for the atom can be identified

by comparison to the repulsive Born potential.

On the other hand, if we assume that formation of the atom in

its solvated state retains the values of the Born potential together

with this potential form, and if further we use the a van der Waals

attraction for the remainder of the potential, then we estimate

a much lower value for the absorption maximum. The value we estimate

for lithium in DMSO depends on estimates of the polarizability

of the lithium atom using the Slater coefficients (cf. ref. 13,

pp. 951-55), and a guess of the ionization potential of DMSO.

Altogether, we estimate that with an equilibrium radius of solvation
0

of 3.68 A, the vibrational maximum should appear in the range of

100 to 1so cm-
I

One can stage rather qualitative arguments to claim that the

Morse potential for the atom, and the identification of parameters

made above, represents a better fit. It needs to be emphasized

that we have employed point dipole models to represent what most

likely is a complicated molecular system. The van der Waals attraction

(as estimated by London's equations 13) is found to be quite strong.
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The effect of this attractive force is to diminish the value of the

force constant for the vibration of the atom in its cage of solvent.

An actual potential might involve much weaker interactions which

would be represented better with the use of the Morse potential.

It may be possible to resolve some of these questions through the

use of quantum chemical calculations. Such a programme is planned.

We conclude this section with a brief analysis of the inter-

action between an ion and a tetrahedral cage of solvent. We

compare these results to a potential inferred for the solvated

lithium atom as described above. The discussion to follow, therefore,

sets the stage for the consideration of the stabilities of the solvated

ionic and atomic systems in the presence of the surface of the metal.

In a previous paper, 7 we considered the question of the

stability of a charge or mass located at various positions of

equilibrium with respect to rings polygons and polyhedra. One

important conclusion of that work was the demonstration of the

close connection between the Taylor series for a polygon and

the series which eventually is constructed for a related polyhedron.

Here, we consider specifically the tetrahedron. As indicated

before, 7 a tetrahedron can be constructed from a base triangle

of sources together with a fourth source placed on the axis which

passes through the centre of the triangle. We can use this approach

to establish the conditions for equilibrium in various regions

of the tetrahedron.

We rewrite the expansion for g(R) as

g(R+r) I [ (rn/n!)A ntPI (r.R)Jn (R) (2.32)
n 0 =



-18-

with

an (R) = ( tF)!(rq)!! R U + f(R). ( 2 . 3 3 )

For the basic polygon, we can write
7

g(R+r) = (rn/n!)An£P (coseR)P£coser[NJnZ(R)] (2.34)

in which N is the number of equally placed sources which make up

the polygon. For example, N is 3 for a triangular distribution

of identical molecules.

The position of equilibrium for a system is determined with

the use of the first order term:

N ePI(c°SeR(N))[NJIl(R(N 9 )] - 0 (2.35)

where the summation over N is over sources. Fora tetrahedron, three

identical sources are placed on the base triangle, and an additional

source is located on the axis, as indicated. For an arbitrary

displacement rP,(coser with respect to all of the sources, we can

write

[3P,(coseR) + I]J11 (R) = 0. (2.36)

If J11(R) 0, then 3cos8R + 1 = 0, or 6R = 109.470, the tetrahedral

angle. This exercise merely proves what is well known.

Suppose, on the other hand, that not all the J11 (R) are the

same. Then, the condition for equilibrium is satisfied by the more
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complicated equation

3 cos8RIJI1(R) + J11 (R2) 
= 0. (2.37)

In order to solve this equation, it is necessary to know the functional

form of the J11 (R) terms. The equation can be simplified by noting

that

cose = 1 R0+3D (2.38)R, -I [RJ+D2.2RoD/3]I 2 2

in which R0 is the distance of a source in the triangle from the

axis which passes through the centre of the triangle. The quantity

D is the displacement along the axis from an origin of the

coordinate system somewhere along the axis. Clearly, when D=0,

the origin is at the centre of the tetrahedron. The value of R, is

R, = VRJ+D2-2RoD/3 (2.39)

and for R

R2 - R0 + D. (2.40)

Thus, eq (2.37) can be solved for the position of equilibrium in

terms of the single parameter D.

It is not difficult to see that for some potential energy

functions, there can be a second position of equilibrium with

respect to a tetrahedron of sources which lies outside the volume.

Indeed, for the tetrahedron, there are four equivalent positions
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of equilibrium outside of the cage. These positions of equilibrium

outside of the cage will be important in our considerations of the

processes of desolvation of ions and atoms in the next section.

The results of several straightforward investigations of the

potential energy of an ion and atom interacting with a tetrahedral

cage of solvent are shown in the figures. Fig. 1 illustrates two

types of interaction. For both cases only the ionic-dipolar attraction

and a Born type of repulsion were considered. For the first model,

Fig. la, the dipoles on the solvent were held rigidly in place in

orientations which gave the maximum attraction at the centre of

symmetry. Thus, as the ion passed- from its initial position of

equilibrium on out through the centre of a face of the tetrahedron,

it passed from a region of attraction to a region of repulsion.

This transition is clearly illustrated in the plot of the force as

the ion moves. The curve for the force shows one zero for the internal

minimum, and a second zero for the maximum near the place of sources

which define the face of the tetrahedron. A third zero does not appear.

There is no position of equilibrium for the location of the ion

outside of the cage. The sum of the repulsions is too great. Thus,

no stable complex can form between the externally located ion and the

cage.

On the other hand, the curves for the second case were derived

by allowing the dipoles to "follow" the ion out of the cage. The

results are shown in Fig. lb. In this case, clearly there is a posi-

tion of unstable equilibrium near to the face of the tetrahedron.

Finally, there is a second position of stable equilibrium outside of

the cage. Thus, it is possible for the ion to occupy this position and

to make transitions from inside to outside of the cage and back.
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The second figure, Fig. 2, is similar to the first except for

the addition of an ionic-induced dipolar attraction which depends

upon the charge on the ion and the polarizability of the solvent.

Here, as well, we consider two cases: one in which the dipoles are

held rigidly in place, Fig. 2a, and the other in which the dipoles

are free to "follow" the ion as it moves, Fig. 2b. In the first

case, the ion moves from a position of equilibrium at the centre of

the cage on out through a face. The force shows one zero at

the central minimum in the potential. A second zero appears at the

maximum near to the face of the tetrahedron. Again, no true second

minimum appears. The strength of the Born repulsion together with

the repulsive orientations of the dipoles toward the ion when the

ion lies outside of the cage is too great. However, because of the

strength of the ionic induced-dipolar attraction, the repulsion is

not as great for the ion when it lies outside of the cage as it was

for the first case, illustrated in Fig. 1.

When the dipoles are allowed to "follow" the ion, we find in

this case that the combination of an attractive ionic dipolar direct

interaction together with the ionic induced-dipolar attraction is

sufficiently greater in magnitude compared to the repulsion that

again no true minimum is found for the ion when it is found outside

of the cage. However, in contrast to the first result, shown in

Fig. 2a, in this case in Fig. 2b we see that the force is attractive

overall. This means simply that if an ion comes under the influence

of the strongly attractive cage of solvent dipoles, it will migrate

to a position of equilibrium within the cage. This strength of

interaction can be of importance for the consideration of the question
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of ionic desolvation at an electrode interface.

The case of the solvated atom, shown in Fig. 3, illustrates a

behavior which is very much like that of the case of the ion in

Fig. lb. Here, as well, we see that it is possible for the atom to

occupy a position of stable equilibrium outside and inside of the

cage. In contrast to the cases for the solvated ion, however, it is

obvious here that the solvated atom is held much less strongly.

It is interesting to note that although the strength of the 'hinding

of the atom to the cage of solvent is much weaker than it is for

the ionic cases, the radii of curvature for the minima of the

potential are sufficiently small to explain why the low-lying

solvated atomic vibrations should be of the same Order of magnitude

as those for the solvated ion. It is clear that the strength of the

binding of the atom to the cage falls off rapidly as the atom is

displaced from its position of equilibrium at the centre of the cage.

3. The Effect of a Surface on the Stability Against Displacement

The analysis of the vibrations of ions and atoms in cages of

solvent gives us some feeling for the nature of the forces which

operate within these systems. We can now examine the stability of

the solvated ion or atom with reference to displacements from the

shell of solvent towards the surface of an electrode. In the follow-

ing discussion, the lithium cation and atom are considered as

example systems. These systems may offer possibilities for

experimental verification.

a. Models: The models of the solvated lithium ion or atom in

the -lectrical interface, the double layer, are the following.
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For both cases a coordination number of four and a tetrahedral

geometry are assumed. It is possible to consider deviations from

this regular geometry. Some consideration of this has been given

elsewhere, cf., ref. 14. The primary effect of the distortion of

the shell of solvent is to lift the three-fold degeneracy of the

vibrations of the ion within the shell. For small deviations,

however, the lifting of the degeneracy, the splitting of the

vibrational levels, is not great. Arguments concerning stability

in these distorted systems parallel the arguments used for the

more regular, crystalline cases of solvation. The results are

essentially the same. We consider the crystalline cases as they

are easier to visualize geometrically, and they are easier to treat

mathematically in this first instance.

For the ion, the cage of solvent is considered to consist

of point dipoles embedded within the molecular mass. The solvent

molecules themselves are considered to be spherical, as an approxima-

tion. The effect of finite size is introduced with the use of an

exponential repulsion of the Born type. The accuracy of this

spherical approximation is doubtful when applied to extended,

polyatomic molecules. Thus, the actual heights of barriers to

desolvation, etc., will not be estimated accurately with this model.

Nevertheless, we believe that for the purposes of this preliminary

type of analysis, some general trends toward desolvation ought to

emerge. The approximation is easily amended to include additional

interactions between the migrating ion and specific atomic and

electronic "parts" of the various molecules of solvent the ion

encounters.

For the two cases, ionic and atomic, the cage of solvent is
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aligned so that one of the tetrahedral faces is coplanar with the

surface of the metallic electrode. The ion or atom is then allowed

to move along a vector which passes through the centre of the face

and on to the surface of the metal. The potential energy for the

ionic or atomic system is evaluated for points along the length of

this vector. In addition, radii of curvature of the potential

energy functions are found for the same points. At a minimum or

maximum in the energy, the radius of curvature is the same as the

force constant. The sign of this quantity determines the stability

of the system against further displacement along the path to the

surface.

The interactions between the solvated systems and the surface

of the metallic electrode are the following. For the case of the

ion, we assume that the ion interacts with the metal through image

forces and through a partial covalent force which is represented

in terms of the Morse potential. It is of course difficult to

obtain information about the binding energy of a lithium ion on

to the surface of a wet electrode. We estimate it to be about one

third of the bond energy of the Li2 molecule. An attraction of this

magnitude seems to be reasonable.

For the case of the solvated atom, on the other hand, we

assume that the atom interacts with its surrounding solvent and

with the surface of the electrode through appropriate forces which

have their origin in the Morse potential. The bond energy of the

lithium atom on the surface is assumed to be of the order of 1.14 eV.

The Morse exponent a is assumed to be 1.2 x 10 cm1 The values

of the dissociation energy D and a which are needed for the

interaction between the solvent and the lithium atom are those
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previously found: D a 0.144 eV and a - 2.63 x 10 8cm-1.3

Finally, both for the ion and for the atom, we assume that a

translation through the face of the tetrahedron of solvent which is

nearest to the surface of the metal is the optimal route for the

process of desolvation. The solvent can be located at the following

places: (O,0,Ro), (,2/TRa,-Ro/3), (I-73Ro,-/Y'Ro/3,-Ro/3), and

(-/77R0 ,-/9R 0 /3,-R 0 /3). In a system in which the solvent is

arranged in this manner, a displacement in the direction of the

surface takes place along the vector (0,O,-r). Thus, in order to

evaluate the forces and force constants we need only consider the

Z-components given in the last section for the various contributions

to the potential energy functions.

b. Stability in the tetrahedron of solvent: In the following

discussion it proves to be simpler and more illustrative to work

with the Morse potential alone. The figures summarize similar

results for the ionic systems.

To begin, we return to the consideration of the equilateral

triangle of sources, molecules of solvent, aligned to be coplanar

with the surface of a metal electrode. Initially, we ignore the

presence of the metal.

It is clear that the origin and centre of symmetry (X=Y=Z=O)

is a valid point of equilibrium for the system. It is the centre

of the triangle of sources. For reference, the sources for this

system can be located at the positions: (±/MR/2,-R/2,0) and (0,R,0).

In each of these cases, P2 (0) - -1/2. Thus, the force constant

for an axial displacement of the test atom in the system is

kM a D exp[a(Ro-R)1(l exp(a(Ro-R)]3. (3.1)
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If R < RO, then the axial motion at the centre of the triangle of

sources is unstable. This condition has been shown before to

apply both to the continuous ring and polygon of source. The

condition for stability, therefore, requires that the source

molecules lie at distances away from the centre of the system which

are equal to or greater than the equilibrium distance R0 , a

characteristic of the Morse potential. The instability which arises

when the test atom is placed in the centre of the triangle traces

simply to the fact that all the interactions between the test atom

and the surrounding molecules lie in the short-ranged, repulsive

region of action of the Morse potential. Were the triangle larger,

an atom could be accomodated at the centre, in a condition of stable

equilibrium, as each pair-wise interaction about the point of

equilibrium for the system would lie in the attractive region of

the Morse potential.

A tetrahedron is formed by placing a fourth source molecule

on the Z-axis. The molecules originally in a plane with reference

to the point of equilibrium must be displaced a distance -R/3 along

the Z-axis. The new source is located at the position (O,O,R).

The force constant for this tetrahedral system now breaks down into

two distinct parts: one part for the plane of source molecules which

form a triangle, and the other part for the new source which lies

on the Z-axis at (O,O,R). The contribution to the total force

constant at the centre of solvation which is due to the three

molecules located at the positions (0,2/"R/3,-R/3), (±/ TR,-V7R/3,-R/3)

is
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k Ma) a2D exp[a(Ro-R)] (2 exp[a(Ro-R)](1-4/aR) - 1

+ 8/aR). (3.2)

The single contribution from the source at (O,OR) is

kM(b) = -T a2D exp[a(Ro-R)] 6 exp[aCRo-R)] - 3). (3.3)

The net result can be expressed as

kM = kM(a) + kM(b)

= aD exp[a(Ro-R)] 2 exp[a(RO-R)1(1.-1/aR) - 1

+ 2/aR]. (3.4)

If R = R0 , eq (3.4) reduces easily to

kM(O) = 8a2D/3, (3.5)

the result previously found.
1

c. The effect of the surface: We now consider the placing of

a fifth source in the system. This source is located at the position

(0,0,-R'). Such a source could represent another solvent molecule.

However, more importantly for our considerations, it can represent

the effective interaction of the atom at the centre of solvation with

the surface. In order to express the force constant for this system,
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the force constants (3.2) and (3.3) are combined with another term

of the form (3.3) which represents the surface. Thus,

kM(agg) 4 a2D exp[a(Ro-R)] (2 exp[a(Ro-R)J(1-4/aR) - 1

+8/aR) + 4 a2D exp[a(Rj-R')I (6 explla(RS-R')] - 3)

+ 1 exp [a"(RO'-R")] 6 exp[a"(RO'-R")] - 3 (3.6)

in which R is the radius of the three (equidistant) sources which are

distributed about the Z-axis, RI is the distance the point of

equilibrium has shifted along the Z-axis, and R" is the distance

from the point of equilibrium to the surface.

The important question to ask at this point is whether there

can be instability at the point of zero force. If the system is

intrinsically unstable, then once the solvated atom is formed, it

should either desolvate automatically or proceed to a more stable

form of solvation. It is possible, in fact, to see the emergence of

stable, solvated surface species. Such species may not correspond

to bound surface atoms (or ions).

We know, from the discussion immediately above, that the simple

triangle of sources yields a stable central position of equilibrium

if R > R0 . Suppose that a" = a and D" = D. And, further, suppose that

for the triangle of sources R = Ro. Then eqn (3.6) reduces to

kM(agg) = a2D + YaD exp[a(Ro-R)] 6 exp[a(Ro-R)] - 3 . (3.7)

This system is unstable whenever a(R -R) > Zn2. However, it is more
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important to note the fact that when both axial sources are of

equal strength, the point of equilibrium lies in the middle of the

triangle of sources. If the system is stable toward an axial

displacement, then the point of equilibrium corresponds to a true

minimum in the potential energy. Therefore, it is possible for

the atom to occupy a position at the centre of a five-fold symmetric

cage of solvation. This, if course, is a conclusion which does not

require elaborate mathematical justification.

On the other hand, if the fifth source on the Z-axis is not

another identical molecule of solvent, it is still possible that

the strength of that source will satisfy similar conditions. The

atom, therefore, may be able to occupy a cage of solvent in a

displaced position, a position which is displaced with respect to

the centre of solvation of the atom in the free solvated state.

The effective cage consists of the solvent and the surface of the

metal electrode. However, it is a state for which true bond forma-

tion to the surface cannot be justifiably defined. As we discuss

more in detail in the next section, in the presence of the metal

it is possible for the combination of the solvent and the surface

to result in the formation of a double potential well with only a

small barrier between the wells. Thus, essentially, the combination

of solvent and metal yields a broad, flat-bottomed potential energy

well.

Although we have concentrated our attention on the formal

analyses for stability in solvated atomic systems, similar analyses

are formulated for the solvated ionic systems. Figures 4 through

9 illustrate the potential and the force for ions and atoms under

the influence of cages of solvent and the metal surface.
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The analyses for stability in the solvated ionic systems are

understandably complicated by comparison to those carried out

here with reference to the Morse potential. For the ionic system

more terms are involved. Hence, computer assistance is required.

Also, in the preceeding discussion, we have limited our

considerations to regular, symmetric distributions of solvent.

It is of considerable interest to explore the possibility that there

may exist deviations from the regular distributions of solvent

which would be intrinsically unstable with respect to solvation.

Under such a condition of instability, one would expect the solvated

species, ionic or atomic, to desolvate readily. We have carried

out a number of computer-assisted analyses in attempts to find

cases of intrinsic instabilities both for the solvated ionic and

atomic systems. Our approach simply was to begin with the crystalline

cage of solvent and to perturb the locations of the molecules and

orientations of the dipoles. This was done with the use of a

random number generator. The random number generator assigned,

sequentially, new values to the coordinates for all species. In

no instance did we discover any intrinsic instability for any
0

moderate (<0.SA) displacement of the location of any molecule of

solvent. Solvated systems seem, by virtue of our analyses, to be

remarkably stable toward the spontaneous exit of an ion or an atom

from its cage of primary solvent molecules. This is not to say

that diffusional migration is impossible. On the contrary,

diffusion is certain. However, it is an activated process which

requires the passage of the system over a potential energy barrier.
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4. Discussion

On the basis of the results we have obtained, at this point

it seems to us to be appropriate to suggest that a proper definition

of an adatom should be the following. An adatom exists as the state

in which a metallic atom located at or near to the surface is solvated

and associated with the surface. However, the metallic atom is

not bound to the surface as part of the crystalline structure of the

lattice. The atom occupies a position of equilibrium at the centre

of a cage of solvent and metal. The location of this position

of equilibrium is shifted away from the centre of solvation toward

the metal.

15
This definition, although not alien to the standard notion,

does impose stronger conditions on how the notion is applied. To

be specific, the formation of an adatom requires the cooperative

expansion of part of the cage of solvent so that a new position of

equilibrium can be formed. This new equilibrium involves the surface

of the metal. Such an expansion is easily possible for a number

of states of coordination. More important, however, is the degree

of "tightness" which can be associated with the coordination. If

the solvated atoms are tightly encaged, obviously it is true that

the cooperative fluctuation needed to expand part of the cage to the

extent that a new, common, and true position of equilibrium can be

formed with the surface is all that much less likely. The energetics

of such a large scale deformation are obvious.

All that we have said about the state of solvation of an atom

in the free state and at the surface, applies equally to the ion.

The analysis of the ionic system parallels that of the atomic system.



-32-

The results are summarized in the figures.

Figures 4 and 5 illustrate the solvated ionic system for the

case in which the centre of the cage of solvent is located at a
a

distance 7 A from the surface of the metal. Figures 7 and 8
0

illustrate the case in which the cage is located 4 A from the
0

surface. At large distances, 7 A or more, the solvated ion is

essentially undisturbed by the surface. The free state, as

revealled in the far infrared spectrum, is evident. As the ion

moves through its cage to a position closer to the surface of the

electrode, it is possible to see the presence of various minima

in the potential energy functions. The number and character of the

minima depend on the model potential energy function used, viz.,

dipoles fixed, dipoles free to follow the ion, the presence and

absence of ionic-induced dipolar interactions, etc. The first

minimum is associated with the presence of the ion inside the cage

of solvent. The interaction is modified by the presence of the

surface of the metal. The other prominant minimum is associated

with the ion at the surface of the metal. However, as we note

shortly, this surface-associated minimum may not be at all real.

As the centre of solvation moves closer to the surface of the

electrode, it is possible to see the disappearance of some of the

middle minima. Finally, the strength of interaction is sufficiently

great that only a single barrier remains.

In Figs. 7 and 8 the case for which the centre of solvation
0

is 4 A from the surface most closely corresponds to the adionic

state. The difference in energy between the solvated and surface-

associated states is not great. It is possible therefore to expect

that considerable migration between these two states is possible.
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The energy of activation for such migrations should be small, of

the order of kT.

If we consider the cases illustrated by Figs. 4 and 5, we

note that the calculation oversimplifies reality somewhat. For
0

a 7 A separation of the centre of solvation from the surface, it

is certain that there will be additional molecules of solvent

in the region between the primary cage and the surface. Thus, in

fact, if the ion were to migrate from its original cage at approximately
0

7 A from the surface toward the surface, it is altogether possible

that the ion will occupy a new position in a cage which manifests

a potential of the form illustrated by Figs. 7 and 8. Therefore,

the sharp and reasonably deep minima shown in Figs. 4 and 5 for

the surface-associated ion are probably not likely to be found in

any real system. As a consequence, the adionic state is as we have

defined it.

We temper our conclusions with the following observations.

First, it is possible to consider the formation of an adionic state.

Our calculations, as illustrated by Figs. 4-9, suggest that a

state of close association might be thermodynamically favoured

as compared to the free, solvated ion (at least as far as the

reduction is concerned). It needs to be noted, however, that

the incorporation of the solvated ion at the surface of the electrode

requires additional work terms which have not been considered.

In particular, no consideration has been given either to the work

which is associated with ionic diffusion through the layers of solvent

in the interface to the electrode, or to the migration of the

solvated species to the surface. In many instances, solvent is

specifically adsorbed at the surface of an electrode. The orientation
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of this adsorbate may be such as to preclude the easy incorpora-

tion of any ion or atom in an adionic or adatomic state at the

surface. Moreover, as noted previously, the simple models discussed

here ignore the complicated characteristics of the polyatomic

solvents. Real barriers to diffusion surely are much higher than

those indicated here. For any polyatomic solvent, the ion or atom

does not merely see the main dipolar species, but also it sees

dipolar attractive (or repulsive) and overlap repulsive contributions

from other groups on the molecules (e.g., the methyl groups of

DMSO or acetonitrile). Thus, there is more than just a fleeting

chance that the reduction of a cation can take place in the region

of the outer Helmholtz plane. There is the possibility that

significant concentrations of the adion cannot form at the surface.

The existence of zero-valent transition metal complexes lends

support to the possibility that metallic deposition can take place

by means of the primary reduction of the cation near to the bulk

of the solution.

In summary, we find that there is reason to suspect that it

is possible for a metallic cation to be reduced electrochemically to

the state of a solvated metal atom near to the surface of an

electrode. In many instances the decomposition of the state of

solvation of the atom should be energetically easier to accomplish

to form the atomic deposit on the metal surface than is the case

for the decomposition of the state of solvation of the ion to form

a surface-incorporated ion devoid of solvent.

This work was supported in part by the U. S. Office of Naval

Research, Arlington, Virginia, USA
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Figure Captions

Figure la. The potential energy and force for a solvated lithium

cation in a tetrahedral cage of DMSO molecules. The dipoles of

the solvent are oriented towards the centre of symmetry and remain

fixed in that orientation. The ion is allowed to move from the

centre of symmetry along any one of the C3 axes. A negative dis-

placement moves the ion toward the solvent molecule which lies on

the axis. A positive displacement moves the ion toward, and

eventually on through and out of the tetrahedral face. These move-

ments of the ion in the cage of solvent trace the potential energy

curve illustrated in this and the following figures for the solvated

ion and atom of lithium.

The interaction in this case, and in lb, consists only of the

direct ionic-dipolar terms and an exponential repulsion of the form

B exp[-(R-Ro)Ip].

Figure lb. The dipoles of solvent are allowed to "follow" the ion

as it moves through the cage of solvent. NOte, the force indicates

the presence of a minimum outside of the cage of solvent.

Figure 2a. The dipoles on the solvent are held rigidly fixed,

oriented optimally toward the cnetre of symmetry of the tetrahedral

cage. The potential consists of an exponential repulsion, the

direct ionic-dipolar interaction, and the ionic-induced dipolar

interaction. The force indicates only one minimum which lies within

the cage.

Figure 2b. The dipoles of solvent "follow" the ion, but, as in Fig.

lb, the centre of mass of each mo'lecule of solvent remains at its
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regular tetrahedral location. There is only one minimum. In fact,

in this case, the attraction is sufficiently strong that an ion

approaching the cage from the outside would accelerate along the

C3 axis and seek the minimum in the centre of the cage.

Figure 3. The solvated atom in the free state is illustrated in this

figure. The pair potential is described by the Morse function.

Compared to the ionic systems, the scale in the figure exaggerates

the depth of the well inside and outside of the cage. Nevertheless,

the radius of curvature of the potential function in the region

of the minimum is similar to that of the solvated ionic system.

Thus, the force constant and frequencies for the solvated atomic

vibrations are expected to be similar to those of the solvated ion.

Figure 4a. In this and the following figures (5 & 6) the centre
0

of symmetry of the solvent cage is located 7 A from the surface

of the electrode. The electrode itself is modelled only with a

single atom (or a simple plane, when image interactions are con-

sidered). In this case, the dipoles of solvent are oriented towards

the centre of symmetry of the cage of solvent. The potential energy

function consists of electrostatic terms, , viz., ionic-dipolar

interactions and image terms, and an exponential repulsion. As the

ion moves through the cage of solvent, the dipoles remain fixed,

pointing towards the centre of symmetry for the cage.

The plot of the force indicates several zeros, however, there

only two true minima: one near the centre of the cage of solvent and

the other near to the surface of the electrode. Note that the second

minimum at the surface of the electrode may be spurious--see text--



-39-

as the calculations used to derive these potential functions ignore

any solvent in the region between the cage and the surface.

Figure 4b. The solvent dipoles are allowed to "follow" the migra-

tion of the ion in this case. As in the case of the free, solvated

ion, here as well we see a minimum outside the cage of solvent.

It is a potential minimum which exists independently of the minimum

at the surface of the electrode.

Figure Sa. The dipoles are held rigidly fixed, oriented toward

the centre of symmetry within the cage of solvent. The potential

energy consists of the ionic-dipolar direct interaction, the

exponential repulsion, and the ionic-induced dipolar interaction. No

intermediate minimum appears between the cage of solvent and the

surface of the metal in this case.

Figure Sb. The dipoles "follow" the ion. Again, no intermediate

minimum appears.

Figure 6. This figure illustrates competing forces, derived from

Morse potentials, acting on the solvated atom. It is obvious that

with respect to the values of the parameters used, the activation

energy for the transition from the solvated atomic to the surface-

associated (adsorbed, adatomic) state is small. Although there is

a shallow intermediate well, its existence is probably spurious--

for the same reasons that the ionic well may be spurious. In any

case, the barrier to desolvation for the atom is much lower than is

the case for the ion.

Figure 7a. In this case, and in the following two figures (8 and 9),
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the centre of symmetry of the cage of solvent is located 4 A from

the surface of the electrode.

In this case the potential energy function consists only of the

ionic-dipolar, direct interaction and the exponential repulsion.

The dipoles are held fixed, oriented toward the centre of the cage

of solvent. In this model, there is still a barrier to the migration

of the ion from the cage of solvent to the surface of the electrode.

Figure 7b. In this figure, the case of the freely rotating dipoles

is illustrated. A barrier to desolvation remains.

Figure 8a. In this figure, the dipoles are held fixed. The potential

consists of the ionic-dipolar terms, the exponential repulsion and

the ionic-induced dipolar attraction. As the figure indicates, there

ramins a slight barrier to desolvation. However, the surface-

associated state appears energetically to be much more stable than

would be the case for the solvated ion at this close a distance

from the electrode surface.

Figure 8b. When the dipoles are allowed to move freely, it

appears that the surface-associated state is accessible from the

solvated state by means of a barrierless transition. The stability

of this state over that of the solvated ion is due to the combina-

tion of ion-solvent attractions plus the attraction between the

ion and the surface.

Fiugre 9. The association of an atom with its shell of solvent and

with the surface is shown. There is a small barrier which exists

between the solvated and surface-associated states. The well

system is roughly symmetrical. Thus, during the lifetime of such
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an association, the atom ought to be able to make easy transitions

from states of association with the solvent to states of association

with the surface, and back.



ENERGY
,-4.40 -3.60 -2.80 -2.00 -1.20 -0.40 0.40

0*-

0-

a)-

-jj
n/

'Ao

. 0 0 16 32 .0 0 8 o
b- o FO C



ENERGY
-4.80 -4.00 -3.20 -2.40 -1.60 -0.80 0.00 -

c0 0nC

t~C3

o0

a A.)

4T
01-24 bs" .0 2.0 4.0 5.0 72

FOC



ENERGY
.- 00 -6 40 -4.80 -3.20 -1.60 0.00 i 1.60

c3-

al

cz)

C3

Cflo

P31

c-

C)

.23 :0.60 0.40 1'.40 2.40 3.40 4.40 5.40CFORCE



E NERGY 0.-. 50 -5.50 -4.50 -3.50 -2.50 -1.50 -0.50

0)f c)

o 0

Ma.3

4 _
-. 43l

C3 C2

m2 .0 -- 80 .80 2.40 4.0 5.6 7 0 0

0)OR0E



E NE RGY
0.60 -0.50 -0.40 -0.30 -0.20 -040O -0

03,

-)

cf)0

co-

00

(y)80000 8.0 1002003.04

FORC



ENERGY
~-6-00 -5.20 -4.40 -3.60 -2.80 -2.00 -:.2C

0

en

C-)

rn

* "-I
_:c

ma

-- I

P1

zn

01-

024 08 0 24 .0 56 I2

FORC



p--

ENERGY -- 0 -- 0 - 8,.20 -4.80 -4.40 -4.00 -30 -. 0 2C
I I I I I I I t I

en

cn

C~3

C cn_1

coi

W-0 4 080 08 24 .0 56 2

FORC



- -- ---- ---pop

ENERGY
-28 -. 0 -. 20 -6.40 -5.60 -4.80 -4.00 -3 .2C

C2'

Ci

0n

I-.

Mcn'-

0

c-

1.20 us-2.40 -0 . d o'.80 2.40 41.00 5.60 7'.20
0 FORCE



ENERGY
,.80 -8.-00 -7-20 -6.40 5. 60 -4.80 -4 .00 -. 80

I III
0a-

clin C)

= 00'cC

ri li

0 (

CID-
co CA

-0- -0 24 40 .0 72 - -oc
2) . 40.

mFORC



ENERGY
-4.00 -. 0 -0.40 0,.00 1 01.40 0.-80 1.1120 1.1

C21

-).

M cn

rn
zn

-j0
0If

0n

01

FOC



ENERGY
-.80 -. 60 -5.40 -5.20 -5.00 -4.80 -4.60

Q -1 1........................

0

o t

I
CvD.V.................. jUr' 6 ' .0 32 .0 6.0 80

0 OC

.. ................ ...



ENERGY
,-7.00 -6.60 -6.20 -5.80 -5.40 -5.00 -4.60 1,

o O..

0D

o 
-

0 
0

r-J

zz

3 so 64

.2d -'2 I .60 0.00 1O'C 3020 4.0 .4



ENERGY
3 1-10.60 -10.20 -9 .80 -9 .40 -9.00 -8.60 -8.20

0D-

C

0v

Co

M C"
=1 

m
z

13

40a-l.0 .0 1.0 3.0 480 64000

CD 
ORC



ENERGY
* -12.40 -11.60 -10.80Y -10.00 -9.20 -8.40 -7.60 811

I- I a - I -

o a

o- -I

o 0:

0

40b

co~

-'1 6 0.0 1. 3.2 4'8 -4

oow,



ENERGY
-8.401 -7.60 ,-.00 1 -0.601 -0.201 0.20 1 0.-60 1 1.00 1.

CD

=0

0o

4 . 80 6 40 )~-bo.0 8.0 160 40 20
CFORC



ILMI


